
NASA Technical Paper 1267

I NASA
TP
1267
C. 1

Digital Computers to Rotorcraft
Real-Time Simulation

,I
D. Brian Mackie and Seth Michelson

JULY 1978

NASA

NASA Technical Paper 1267

Application of Special-Purpose
Digital Computers to Rotorcraft
Real-Time Simulation

D. Brian Mackie
Aines Research Cetiter
Moffet t Field, Culifortzia

Seth Michelson
Coiizpziter Scieizces Corporatiovz
M ountaii i V i e w , Califorizia

NASA
National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978

.. .. , , ,

TABLE OF CONTENTS

Page

SUMMARY . 1

INTRODUCTION . 1

PROBLEM DESCRIPTION . 2

TECHNICAL APPROACH . 3

RESULTS AND DISCUSSION . 4
System Selection . 4
Mathematical Model Selection . 5
Array Processor Programming . 6
Multilooping . 8
Limitations . 11

CONCLUSIONS . 13

APPENDIX A . AP-120B DESCRIPTION 15

APPENDIX B . ARGUMENT NORMALIZATION AND TABLE LOOK-UP 17

APPENDIX C . ITERATIVE DIVIDE ALGORITHM 19

REFERENCES . 22

.... 1.1--.----.... 1 II-..-.........

APPLICATION OF SPECIAL-PURPOSE DIGITAL COMPUTERS

TO ROTORCRAFT REAL-TIME SIMULATION

D. Brian Mackte
Ames Research Center

and

Seth Michelson
Computer Sciences Corporation

SUMMARY

A study was initiated to determine the suitability of using an array processor as a computa-
tional element in rotorcraft real-time simulation. It was necessary to determine whether the speed
of such a processor would be great enough to accurately simulate complex rotorcraft. Since
memory limits on such a computer are quite restrictive, only the rotor portion of the model could
be array processor resident. The array processor proved fast enough to execute the rotor code in less
than 5 msec. Thus, the course of investigation branched into a study of the validity of a
multilooping scheme, in which the rotor would loop over its calculations a number of times while
the remainder of the model cycled once on a host computer. To prove that such a method would
realistically simulate rotorcraft, a FORTRAN program was constructed to emulate a typical
host/array processor computing configuration. The multilooping of an expanded rotor model,
which included appropriate kinematic equations, resulted in an accurate and stable simulation.

In the course of the study, many programming and operational difficulties were encountered.
All of these were due t o a fundamental conflict of concepts between the general-purpose program
and the special-purpose computer. Some of these problems were mere inconveniences. However,
several severe problems were also encountered during the development of the array processor
program. In particular, major manpower effort was required for translation of a FORTRAN model
into microcode, and logical debug would further require substantial effort.

INTRODUCTION

When using a rotating bladeelement method in modeling rotorcraft, an entirely new and more
complex set of aerodynamic considerations arises than those encountered with fixed-wing aircraft.
The initial complications arise because the rotor blades induce lift and drag on their surfaces as a
function of the radial distance from the hub to a point on the blade. The process is further
complicated by the fact that at any given moment, each blade is encountering a unique set of flight
conditions. Therefore, each must be considered individually. Finally, high-frequency contents are
introduced into the entire aircraft model through rotor rotational moments.

At the Ames Research Center, it has been determined that for a simulation of conventional
fixed-wing aircraft to be acceptable to the engineers and research personnel, the integration interval
(cycle time) should be less than approximately 50 msec. Otherwise, both the motion and visual
systems will generate granular, unrealistic results, and numerical instabilities can be introduced into
the dynamical equations. But, because of the inherent complexities involved in rotorcraft simula-
tions, another aspect of the problem had to be considered. To maintain numerical stability and
model fidelity for rotating blade-element rotor models the rotor must cycle at approximately
5 msec (see ref. 1). Because Ames simulation facilities have been structured for fixed-wing aircraft,
the computational capabilities for handling complex rotorcraft were totally insufficient.

Recognizing the need for rotorcraft simulation, and recognizing the inadequacies of the
present simulation environment, this study was undertaken to determine whether an array processor
could be used as the dedicated element in a distributed computing system on which the rotor
portion of the rotorcraft mathematical model could be run. This examination further resulted in the
study of multilooping techniques which were designed for the parallel processing of the aircraft
equations with multiple repetitions of the rotor equations. Further, the study was designed to
investigate not only the technical feasibility of such an approach, but to define the limitations
encountered when using a special-purpose processor to solve a general-purpose problem.

PROBLEM DESCRIPTION

An area of significant interest in real-time simulation at Ames Research Center deals with the
simulation of complex rotorcraft. The problems arising from rotorcraft simulations are twofold.
First, the large number of equations contained in rotorcraft models requires large simulation cycle
times on Ames computers. As noted earlier, previous experience with real-time simulations had
indicated that cycle times should be under 50 msec. Due to bandwidth limitations on existing Ames
computers, it was not possible to achieve this cycle time for complex rotorcraft models. Second, the
frequency content of the rotating bladeelement rotor model equations requires that cycle times be
of the order of 5 msec. Because the existing simulation laboratory computers could not meet the
50-msec cycle time requirements for this model, these further demands could not be met.

Because of the computer bandwidth limitations, a number of methods have been used in the
past t o achieve real-time execution of rotorcraft simulations. The most common methods have been
t o degrade the rotor representation and/or the integration interval. A recent study of the applica-
tion of these methods to a typical rotating blade element model indicated that the rotor cycle time
should be less than 5 msec (see ref. 1). Increasing the integration interval beyond 5 msec resulted in
increasingly incorrect static and dynamic vehicle response as a result of larger rotor blade azimuthal
advance angle.

Therefore, it became necessary to determine how this particular rotor model could be cycled
in less than 5 msec without degrading the rotor representation. Two possible solutions were
examined. First, a study was initiated to see if a large, high-speed digital computer could solve this
type of problem. It was determined that while such a computer could easily meet speed and
programming requirements, the cost in terms of manpower, time, and money warranted an
investigation into other possible systems (ref. 2). Concurrently, a second study was undertaken to
investigate four alternative systems: (1) low-cost general-purpose digital computers; (2) analog

2

systems; (3) hybrid systems; and (4) special-purpose digital peripheral computers. Results of this
second study indicated that a system composed of a special digital peripheral attached to a
general-purpose host mainframe would be the most effective approach (see ref. 3).

Having now established the desired approach, a market survey was undertaken to consider the
set of special-purpose peripherals that could be used for the simulation effort. Specifics of each
machine were discussed, including manufacturer hardware, software, and support. The results of
this survey are contained in reference 4.

The specific problem under consideration in this paper is whether a system consisting of a
special-purpose digital computer attached to a host mainframe can accurately simulate complex
rotorcraft in real-time. Using a representative computer system and rotorcraft model, results of
array processor programming studies and alternative multilooping configurations are presented.
Further, limitations of such an approach are assessed.

TECHNICAL APPROACH

The technical approach chosen for this study consisted of the following steps. First, it was
necessary to select a representative computer system. Based on studies cited earlier, it was
determined that this system should consist of an array processor and an associated host computer.
The array processor would nominally contain the rotor model plus any other required computations
or portions of the rotorcraft model which could be easily programmed in microcode. The host
computer would contain any parts of the rotorcraft model not programmed on the array processor,
control array processor execution, and provide required interface to the “outside world .’,

It was also necessary to select a rotorcraft mathematical model to use in the analysis. The
objective was to choose a model that (1) was typical of the type Ames Research Center would be
using in the next 5 years, (2) could be programmed or modified in a reasonable time, and (3) would
have readily available static and dynamic checks.

The next step in the study consisted of programming the representative rotorcraft mathemati-
cal model for the particular computer system chosen. The goal was (1) to acquire actual hands-on
experience with array processor programming techniques, and (2) to develop a reasonable estimate
of the expected cycle time. It was expected that this phase of the study would indicate any
difficulties in this approach from a computer science point of view, and give a general estimate of
the potential of such a system.

Finally, it was necessary to investigate multilooping configurations, in which the high-speed
array processor would execute all of its code several times during one loop of the slower host
computer. This effort was directed toward determining whether a stable and sufficiently accurate
real-time solution to the rotorcraft mathematical model could be obtained using a combination of
the host computer and multiple loops on the array processor.

3

RESULTS AND DISCUSSION

System Selection

As stated earlier, i t was determined that the most advantageous system considered would be
one in which a fast peripheral computer was attached to a general-purpose host mainframe. The
actual system configuration chosen for this study consisted of a Floating Point Systems AP-120B
attached to an unspecified host mainframe. A short description of the AP-120B can be found in
appendix A. Because the AI'-1 20B includes a FORTRAN-based emulator, it was possible to program
the rotor for the array processor and to obtain cycle time estimates without obtaining the actual
hardware. The multilooping concept of the host/AP-l20B system was simulated using a FORTRAN
model of the entire rotorcraft. Using time-scaling techniques on the simulation, several multilooping
configurations were tested allowing results to be obtained for host computers of several different
speeds.

The hardware and software aspect of both the host computer and the array processor are
discussed in more detail below.

Host computer- Because the array processor is a peripheral device, it must be physically
attached to a host computer. The host computer is a large, general-purpose digital mainframe, which
is responsible for controlling execution of the array processor and the transfer of its data. In
addition, the host computer must accommodate all real-time operating software and any portions of
the rotorcraft model not resident in the array processor.

The present environment at Ames Flight Simulation Laboratory would likely dictate the
choice of a host from an already existent set of computers. However, some facilities might require
the purchase of a new. computer as a host. The specific factors of such a decision are not within the
scope of this study but some general statements can be made about the kind of host mainframe that
should be used.

Primarily, the host mainframe should have enough programmable memory to completely hold
the modified aircraft model and all real-time support software. Furthermore, i t should be fast
enough to execute them in a reasonable time. Secondarily, the computer should be adaptable to the
present operating environment. Specifically , the real-time support code for the rotorcraft model
should be of the same form and substance as existing real-time software to maintain facility
uniformity. If a new machine is to be obtained for use as the host mainframe, both time and effort
would have to be expended in the development of a compatible real-time operating system. A third
factor to consider is that the array processor and the host mainframe be hardware compatible. Some
array processor manufacturers provide hardware interfaces for a select set of host candidates.
However, if the machine chosen to be the host is not a member of that set, extra money and
manpower would have to be allocated for the development of such a piece of equipment. Finally,
perhaps the most important consideration involved with the host computer is that the data transfer
and array processor control software run efficiently and quickly. If not, any savings realized by
implementing the rotor on a fast peripheral computer could be lost in the transfer overhead.

Array processor- To pursue this line of investigation, one representative, special-purpose
digital computer was chosen on which to implement the rotor model. The choice in this case was

4

I

based primarily on the results of the market survey initiated by Ames Research Center and reported
in reference 4.

Some general statements can be made about the kind of special-purpose digital computer that
might be utilized in a real-time simulation environment. First, it should be large enough to hold the
rotor model, all associated library and user-written routines, communications software, plus certain
other short routines to be described later. In cases where available program source memory is
limited, this consideration is by no means trivial. Second, the computer should be fast enough to
execute all of this code in a cycle time short enough t o produce an accurate real-time solution to
the rotor model. Various special-purpose digital computers have internal clock cycles in the 6 MHz
to 40 MHz range. At the lower end of this range, extensive equation sets in the rotor model could
cause the cycle time to become too long. Third, as noted in the discussion of the host computer, the
array processor and the host must be hardware compatible.

Mathematical Model Selection

Selection of an appropriate rotorcraft mathematical model to use in this study required that a
number of factors be taken into consideration. As noted earlier, three criteria which the mathemati-
cal model should satisfy were: (1) applicability to future Ames Research Center simulation studies,
(2) ease of programming and modification, and (3) availability of checkout data. The rotorcraft
mathematical model chosen to perform this study was a preliminary model of the Rotor Systems
Research Aircraft (RSRA).

The RSRA is a flying test platform intended for use in the evaluation of advanced rotor and
control system concepts. It is a complex rotorcraft which can be configured as a helicopter (main
rotor, tail rotor, and upper horizontal stabilizer), a compound rotorcraft (helicopter plus wings,
turbo fan engines, and lower horizontal stabilizer), or a fixed-wing aircraft (wings, turbofan engines,
upper and lower horizon tal stabilizer). The RSRA mathematical model is a total-force, nonlinear,
large-angle representation in six rigid-body degrees of freedom. The rotor model is a full rotating
blade-element model with representation of rotor blade flapping, lagging, air mass flow, and hub
rotational degrees of freedom.

The RSRA model was selected for use in this study for a number of reasons. First, the RSRA
is a flying test platform for advanced rotor and control system studies. In preparation for these
studies, the simulation model will be utilized extensively over the next several years. Second,
real-time simulation studies of the RSRA have been performed in the past at Ames Research Center.
Thus, an RSRA simulation program was already in existence and could be easily modified to
perform this study. Furthermore, the simulation program could be run on the existent simulation
laboratory system, which included facilities for easy output of static and dynamic check data.
Finally, a significant amount of previous research had been performed on the RSRA. In particular,
studies on rotor model degradation (see ref. 1) and simulations using parallel processors (see ref. 5)
provided valuable guidelines in the use of the RSRA mathematical model for this study.

5

Array Processor Programming

Before starting to microcode, the first step in the implementation of the RSRA simulation
model on the array processor was the creation and debugging of a FORTRAN program of the entire
model on the host computer. The Ames Research Center simulation laboratories are well equipped
with both foreground (real-time or timescaled) and background (batch mode) programs to aid the
simulation engineer in debugging a FORTRAN program. Also, as will be discussed further in a later
section, the array processor simulator would have required several hours to complete just one pass
through the rotor subroutine. Thus, static and dynamic checks required to debug the entire
simulation, or even that part to be run on the array processor, would have been unobtainable in a
reasonable length of time without a FORTRAN version of the model.

Preparation of the FORTRAN model was done in such a way that the program could be easily
adapted to the array-processor system. COMMON blocks were organized such that variables to be
transferred between the host and the array processor were contained in separate, contiguous blocks.
This simplified the transmission of variables immensely. In the subroutine which would be
programmed later on the array processor, calls t o argument normalization routines for nonlinear
function table look-ups were placed, where possible, immediately after the calculation of the
independent variable. Reciprocals of constants allowed some divisions to be replaced by multiplica-
tion. Sets of equations which could be written in vector notation were grouped together as much as
possible. Finally, the subroutine code was carefully optimized to minimize the number of lines,
keeping in mind that each FORTRAN line would require an average of seven to eight lines of
array-processor microcode to implement.

During the programming of the FORTRAN model it was necessary to determine which groups
of calculations could be written in vector (or matrix) notation. This would allow efficient use of the
matrix and vector manipulation library routines provided for the array processor. Grouping these
equations together allowed sequential calls t o vector or matrix routines to be combined into one
call which reduced overhead and increased execution speed.

.

Since the array processor program is written on the microcode level without the aid of a
symbol table builder, it was necessary to allocate array processor memory prior to writing the
array processor code. Accessing sequential memory locations is much easier and faster than
accessing random memory locations. If high-speed data memory is being used, only variables on
different pages of the interleaved memory may be accessed in sequential clock cycles. Thus, it was
essential that the address of each variable in memory be allocated before coding began.

For the RSRA real-time simulation program, memory was allocated so that variables were
grouped into the following major categories:

1. Vectors: Typically, vectors had only three components corresponding to the three rota-
tional or translational degrees of freedom.

2. Matrices: Corresponding to the length of vectors, matrices were typically 3x3 square
ma trices.

3. Arrays: Variables that were dimensioned as arrays in the FORTRAN program could be
most easily accessed if placed in a separate location in memory.

6

.- I... -,...-.....I, I
I

I I111111.1.11.1111.1 I 1 .I

4. Data tables: For this application, table data were assumed to reside in the Main Data
Memory. If read/write table memory were purchased, table data could be placed in table memory.
This would require some slight modification to the present nonlinear function generation routines,
and would perhaps result in a slight decrease in execution time.

5. Data table headers: Each data table required a header for use by the nonlinear function
generation routines. The header was actually composed of one 7-word vector for each independent
variable associated with the data table. Argument normalization and table look-up procedures on
the array processor are discussed in appendix B.

6. Divide space: The iterative Newton-Raphson divide algorithm implemented for this study
typically requires locations for the storage of the inverse, if it is not explicitly called for in the
FORTRAN program; this divide algorithm is discussed later in the report and in appendix C.

7. Constants: Literal values (e.g., constants in equations) must be placed in memory a t a
specific location, and accessed by address. Thus, the addressing mode typically referred to as
“immediate addressing’’ is not provided. As with data tables, if table memory is purchased, these
constants could be placed in table memory, resulting in a slight decrease in execution time
(1 67 nsec decrease per access).

8. Real variables: For this study, real variables were placed in memory in alphabetical order
without concern for order of access. For a large simulation program, in which variables are
randomly accessed at a number of points throughout the program, attempting to arrange variables
according to order of access is probably not practical.

9. Integer variables: Because integer variables are treated differently from real variables in the
program, it was easier to place them in a separate area in memory.

The above memory organization was by no means optimized to place sequentially accessed
variables in alternate memory pages, nor was it the only one possible. However, based on the
authors’ experience it was a workable organization which allowed the program to be written in a
straightforward manner.

Once the FORTRAN program had been completely debugged, the equations of vector form
grouped together, and the array processor memory allocated, the writing of the array processor
program could begin. To facilitate debugging of the array processor code, the following procedure
was followed. Typically, one FORTRAN line was translated into array processor microcode before
proceeding to the next line. This is not to imply that look-ahead was ignored. Significant savings
were gained by overlapping some FORTRAN calculations to fill a pipeline or by saving intermediate
results in scratch pad registers for future reference. As each FORTRAN line was encountered, it was
written as a comment line above the corresponding section of microcode. Thus, at debug time, it
would be possible to verify any questionable section of array processor microcode by executing the
FORTRAN code to the corresponding line and comparing the variable(s) in question.

To take advantage of the array processor’s speed, i t was necessary t o determine at each line of
code which instructions (e.g., add, multiply, memory fetch) could be performed in parallel and
which operations could be easily pipelined. Also, because of memory access timing it was neccessary
to anticipate which variables would be required and fetch them at least three clock cycles in

7

advance of the time they would be needed. These three considerations (paralleling, pipelining, and
memory access) combined to greatly complicate the programming of the array processor. Without
careful accounting for each variable throughout the program, the difficulties of programming could
have become overwhelming.

On the AP-I20B emulator, any syntax errors in the array-processor code were flagged by the
assembler at assembly time. Once these errors had been corrected, the modules created by the
assembler were linked for debugging or for writing into the array processor for execution.

Timing results for the array processor code could have been obtained in two ways. Using the
interactive debugger, it would have been possible to execute the program and obtain timing results
directly using the breakpoint' capability. However, as will be discussed later, execution of the entire
program with the debugger would have been an unacceptably time-consuming task. Thus, in this
case, timing results were obtained by taking into account all executable lines of code and
multiplying by 167 nsec/line. Memory requirements were obtained directly from the load map
created by the loader.

Memory and timing results for the blade-element rotor model programmed for this study are as
follows: The FORTRAN model consisted of 276 lines of code, requiring 1504 procedure words and
3898 data words of memory on an XDS Sigma 8 computer. Under the extant operating system, the
rotor code will execute in approximately 37 msec on the Sigma 8. The equivalent program
implemented on the FPS AP-120B (based on results using the emulator) would require 2054 words
of Program Source memory (corresponding to the required procedure words above) and 3 1 16 words
of Main Data memory (corresponding to the required data words above). Timing results indicate
that this code will execute in approximately 4.7 msec on the AP-120B.

Because the array processor code was not debugged, as discussed later, the results for the
AP-120B are not absolute. However, even allowing as much as a 10% error in the coding (which
would correspond to adding 200 lines of array processor code), the array processor exhibits better
than a 7-to-1 speed advantage over the Sigma 8 for this mix of instructions. Programming complex-
ity of the array processor is much greater, though, with each FORTRAN line requiring an average of
7.4 lines of parallel microcode to implement. Note also that the 2054 words of Program Source
memory, which include all library and user subroutines required in the array processor, are slightly
more than half the available maximum of 4096 words of AP-I 20B program memory.

Multilooping

Initially it had been hoped that the majority of the rotorcraft model could be array processor
resident. However, once the rotor portion had been microcoded, it became apparent that the
remainder of the rotorcraft model could not be included on the array processor, because the rotor
code required over half the available program source memory on the array processor. Thus, the
course of investigation branched into a study of the validity of a multilooping scheme.

It was not clear at the outset whether separating the rotor from the rest of the aircraft and
calculating the rotor equations at a smaller cycle time in parallel (i.e., multilooping) would result in
a reasonable simulation of the entire aircraft. Since multilooping is the basis for the entire
array processor approach, a FORTRAN simulation was designed from an existent simulation model

8

of the RSRA. The simulation consisted of a variable repetition loop to enclose the “array processor
code,” a communications routine to simulate a parallel processing communications link, and a pair
of variable cycle times to simulate real-time multilooping. Various static and dynamic checks were
then performed on this “host/array processor” system.

The emulation, with this particular loop structure, allowed the option of choosing the ratio of
the number of times the rotor would cycle to each cycle of the aircraft code. Since the rotor
calculations had been estimated to require approximately 5 msec on the array processor, the
time-scaled aircraft frame time was 5Nmsec, where N is the number of rotor cycles per aircraft
cycle. Many different values of N were tested so that the results could apply to a variety of
hardware configurations. Thus, static and dynamic checks for loop ratios from 1 -to-1 (aircraft frame
time of 5 msec) to 12-to-1 (aircraft frame time of 60 msec) were carried out for several systems and
aircraft configurations. The single computer version of the model (i.e., no multilooping) was run at
5 msec and used as a control case.

The most significant effects on the aircraft as far as system stability is concerned, will manifest
themselves in the rotational degrees of freedom, due to their high-frequency components. Other
studies indicate (see ref. 1) that because of the relatively small inertial values in the roll axis, the
model is most sensitive in this degree of freedom. Hence, the aircraft model is more likely to
become unstable in this critical area than in the pitch or yaw axes. Therefore, inputs that excite the
roll degree of freedom (lateral cyclic pulses) were used as a worst case approach to testing the model
stability.

The total vehicle dynamic response tests were initiated by starting the vehicle at a trim
condition determined by the simulation model trim routine. At 1 sec into the flight, a 5% lateral
cyclic pulse was applied for 1 sec. Appropriate variables representing vehicle response were plotted
by strip-chart recorders for analysis. Of these variables, body roll acceleration (PBD), roll rate (PB),
roll angle (PHI), and -rotor blade flapping angle (BR) are presented in figures 1-4.

Figure 1 displays the total vehicle dynamic response with only the rotor on the “array
processor” and the remainder of the aircraft model on the “host computer.” The responses at loop
ratios of 1-to-1 and 2-to-1 are indistinguishable from the single computer response. However, at the
4-to-1 loop ratio, there is a slight high-frequency oscillation in body roll acceleration (PBD). At a
loop ratio of 6-to-1, the oscillation in PBD is very pronounced and divergent with effects of the
oscillation appearing in body roll rate (PB). At a loop ratio of 8-to-l , there are divergent oscillations
in PBD, PB, body roll angle (PHI) and rotor blade flapping angle (BR). The 8-to-1 loop ratio
represents an aircraft cycle time of 40 msec, which is less than that expected on the Ames host
mainframe. Thus, the configuration in which just the rotor is array processor resident does not
represent a feasible method of simulating complex rotorcraft for cases where the host computer
cycle time is greater than 20 msec.

In this configuration, the rotor is separated from the body rotational accelerations. Thus,
dynamic interaction between the rotor and the rotational accelerations can occur only at the end of
every Nth loop. The magnitude of instability increases as the loop ratio N increases. Because of
earlier dual processor studies, an alternative configuration is known to reduce instabilities for the
equivalent of a 1-to-1 loop ratio a t 46 msec (see ref. 5). In this configuration, the body rotational
equations are included in the rotor loop, thus allowing higher frequency interactions between the

9

rotor and the body rotational degrees of freedom. Extending this concept into a multilooping
scheme yields the following results.

Figure 2 represents the total vehicle dynamic response with the rotor and the calculation of
rotational accelerations and rates on the “array processor” and the remainder of the aircraft model
on the “host computer.” Again, the responses at loop ratios of l-to-1 and 2-to-1 are indistinguishable
from the single computer response. At the 4-to-1 loop ratio there is a slight low-frequency
oscillation in PBD. However, unlike the results from figure 1, the responses a t 6-to-1 and 8-to-1 loop
ratios are not noticeably different from the response at 4-to-1. Even at loop ratios of 10-to-1 and
12-to-1, the dynamic response is stable and accurate. I t should be noted that the rotor blade
flapping angle (BR) is not as granular as it appears in figure 2. Due to software limitations and
model simulation procedures, the digital-to-analog signals cannot be output every rotor cycle, but
only once every aircraft cycle. Results of this experiment indicate that a configuration in which the
rotor model plus the computation of rotational accelerations and rates are array processor resident
can provide a sufficiently accurate simulation of compound rotorcraft for cases where the host
computer cycle time is as great as 60 msec.

Figure 3 shows the total vehicle dynamic response for an array processor cycle time of 6 msec.
This case accounts for the effect of increased rotor model complexity. It is possible that a more
complex rotor model might be required in other rotorcraft simulations, which could result in
dramatic changes to the stability of the system. A cycle time of 6 msec has been chosen because
increasing the array processor cycle time from 5 msec to 6 msec would require the addition of
approximately 6000 executable instructions. Because program source memory limitations on the
array processor would likely preclude the addition of such a large number of instructions, it is not
necessary t o consider cycle times greater than 6 msec. As in the second experiment, the calculation
of body rotational accelerations and rates is array processor resident. Because the dynamic response
at 1-to-1 and 2-to-1 loop ratios is indistinguishable from the single computer response, plots of
those cases have been omitted. Note that again in the response a t the 4-to-1 loop ratio there is asmall,
low-frequency oscillation in PBD, and the responses at 6-to-1 and 8-to-1 loop ratios are stable and
accurate. The response at the 10-to-1 loop ratio, which represents a host computer cycle time of
60 msec, indicates an accurate dynamic resppnse. Results of this experiment indicate that increased
rotor model complexity will not adversely affect the dynamic response of the compound rotorcraft
simulation.

Figure 4 shows total vehicle dynamic response with the rotorcraft configured as a helicopter
rather than as a compound rotorcraft. The computations of body rotational accelerations and rates
is again array processor resident. The dynamic response at I-to-1 and 2-to-1 loop ratios is very
similar to the single computer response. The response at the 4-to-1 loop ratio exhibits a slight
low-frequency oscillation in PBD. However, at loop ratios of 640-1 and 8-to-1, this oscillation is
attenuated and the dynamic response is stable and accurate. This experiment indicates that the
multiloopling scheme can provide a sufficiently accurate simulation of a helicopter as well as a

1 compound rotorcraft.

Further dynamic checks have been performed on both helicopter and compound rotorcraft
configurations over a range of flight speeds. These dynamic checks have included lateral cyclic
pulses, as in the above experiments, collective pulses, and longitudinal cyclic pulses. Results of these
dynamic checks, which are not presented in figures here, indicate that the multilooping scheme in
which the computations of rotational accelerations and rates are array processor resident can

10

. .. _. . ~ . -.- ~-

provide a sufficiently stable and accurate real-time simulation of rotorcraft, both compound and
helicopter.

Limitations

When one attempts to simulate a rotorcraft model in real-time on any computer system,
certain limitations are t o be expected. Most of these limitations are overcome by reducing the
complexity of the computer model, such that approximate accuracy and fidelity are acceptable
trade-offs for time critical results. However, when the computer system has been specifically
designed to handle a different, special class of problem, an additional set of limitations is
encountered that cannot be overcome by reducing the model complexity. Some of these difficulties
arise due to the specific machine chosen for the task. But the overwhelming majority of them are
the result of conflicts encountered when trying t o apply a special-purpose computer to an
application for which it was not designed.

While using the array processor, some very serious problems were encountered due, primarily,
to this general conflict in design philosophy. It is important to remember that the array processor
was designed for use in small problems with large amounts of vector data. Examples of such
applications are signal processing and seismic analysis. The rotor model, on the other hand, is a large
set of differential equations with many scalar variables and a small set of three-component vectors.

Array processors were designed to be used in applications in which the typical program is
rather small, although the data set may be immense. Therefore, the basic hardware configurations
offered on the array processors feature a very small program source memory space. At first it was
hoped that an entire simulation could be implemented on the peripheral computer with only
real-time operating software remaining on the host. But because the AP-120B has a source program
limit of only 4096 words of memory, the only alternative for this study was the implementation of
just the rotor model on the array processor. This does not present a serious problem, if the type of
model will lend itself to a multilooping scheme. In the case of the RSRA, with certain modifica-
tions, this was true. However, the small memory size is a severe limitation to the further addition of
control systems and/or the complication of the model.

Array processors are designed for applications in which floating point division is not generally
required. On the AP-120B no floating divide hardware is built into the unit, but a slow software
divide is provided instead. However, the rotor model has 84 floating divisions. The slowness of the
provided software necessitates the adoption of a simpler, though less accurate, algorithm to do
software divides. This requires the design, implementation, and debugging of another piece of
software. While there is a possibility that table memory could be purchased to hold the divisor and
dividend, that would only speed up the algorithm by one instruction per division. The specifics of
the divide algorithm are discussed in appendix C.

Because the design philosophy is a t odds with this application it is not unreasonable to
conclude that the programming philosophy should also be at odds. The array processor was
designed such that maximum efficiency could be achieved by writing short, tight loops in which all
the independent hardware units were being used simultaneously. The efficiency is further increased
if the data sei can be considered a large vector which is to be processed by these loops. The rotor
model used in this study was not formulated in this manner at all. There were few vectors present,

.

11

and those that did exist were only three elements long. The equations were long and complicated,
and no short loops could be made from the model. Some of the calculations could be overlapped so
that the hardware components could be run in parallel, but this situation was not universal.

The model had some equations that could be written in vector notation, thus making use of
matrix-vector algorithms. However, this was not true for the vast majority of the model. The scalar
calculations had to be done in specific order and, in many cases, the result of one step was
prerequisite to calculations in the next. While some savings were gained by storing results in a fast
scratch memory buffer, the theoretical maximum efficiency was unachievable.

As discussed earlier, it was necessary to allocate array-processor memory prior to coding. This
memory plan, with conceptual vectors and matrices included, then lent itself to pipelining of
memory locations and the processing of data. Typically, a software library of vector functions is
provided by array processor manufacturers. However, because the vectors encountered in this model
were so short, the overhead entailed in library utilization made this practice counter-productive in a
real-time environment. This situation is not a function of any particular machine or software but
rather, the result of the basic conceptual conflicts encountered in trying t o apply a special-purpose
processor to a class of problems for which it was not designed.

Another problem that became apparent was the large manpower effort required to translate a
FORTRAN program to microcode. The efficiency and speed of an array processor can only be
achieved by coding every clock cycle, causing the translation of any appreciable FORTRAN
program to require an incredible manpower effort. As an example, on the given RSRA model, an
average simulation engineer can completely code the rotor in FORTRAN in about 2 weeks. (Note,
this is the required time for coding only and does not take into consideration study and preparation
time needed to understand the mathematical model. However, that adidtional time would be
overhead in considering coding effort and is irrelevant t o this point.) The actual translation time
needed to microcode the base FORTRAN model was 3 man-months, involving experienced person-
nel. The work, in addition to being very slow, was very difficult to master. Many idiosyncrasies of
microcode significantly complicated the process of direct translation.

Problems also arise with respect to system software due to this conceptual conflict. While the
exact problems are a function of the particular software, the general class of problems encountered
is a consequence of the philosophy. Unrealistic limits on symbols and labels result because of the
assumption that the machine will only be used for small programs. On the AP-120B in particular, no
limit checks were done on the arrays in the asembler, which handled the user symbols, thus giving
rise to spurious and misleading error messages. Further assumptions were made in the emulator with
respect to the particular hardware configuration (memory size and speed) of the array processor
being simulated. These required a great deal of work to correct in both the linker and the emulator.
The additional time required to first define, and eventually fix, these problems was very costly to
the program development effort. These problems are the direct consequences of the assumptions
made concerning applications of the machine.

The problems with software increased during debug time. At Ames flight simulation facilities,
real-time foreground work is being done in parallel with nontime-critical software development in
background. Because the simulator was designed to mimic a small array processor configuration, no
initial problems arose with its use. However, once the rotor code was translated only a large array
processor would accommodate it. The simulator program grew by a factor of about 3.5, from 15.6K

12

to 56.6K, putting the background software development process in conflict with the real-time user.
The majority of the time slice allocated to the background user was spent in paging the program
into and out of working core. The result was that the emulation of 38.5 psec of code required
40 clock minutes. At this rate, i t would have taken approximately 8 2 hr to complete one emulator
pass through the rotor code in background on the Ames simulation computer.

The consequences of such a situation would mean that program debugging would require
foreground status and thus, scheduling and system software support, or, alternatively, a dedicated
computer, to avoid swapping and paging. Besides these problems, the debugging of the microcode is
a very slow and arduous process. A period of 6-8 weeks for debugging the array processor rotor
model would be a reasonable estimate. Therefore, any simulation would require dedicated fore-
ground computer time for at least 2 months prior to its scheduled execution date.

CONCLUSIONS

This study was designed t o investigate the feasibility of employing a relatively fast peripheral
computer on which the rotor portion of a real-time rotorcraft model could be executed. The overall
investigation branched into three subareas, each being fundamental to the feasibility of this
approach. First, it was necessary to determine array processor speed factors. Second, the numerical
feasibility of multilooping as a simulation method had to be tested. And third, the practical
limitations encountered due to incorporation of a special-purpose digital processor into the general
simulation environment had to be defined and evaluated.

The key points of interest seemed to separate into two natural categories. The first is the
feasibility of the scheme with respect to the simulation environment, and the second is the
feasibility of all the computer science aspects of the method. While in an actual operating
environment the ultimate effects are totally interrelated, a study such as this, by its very structure,
distinguishes between them.

The most important point concerning the feasibility of simulating rotorcraft in this manner is
that, because the array processor can cycle the rotor in under 5 msec (a factor of 7 speedup over the
present Ames’ simulation computer) the multiloop method, with suitable rotor support code,
successfully achieves the degree of accuracy and stability needed to make this a workable approach.
While it was shown that the software configuration which separates only the rotor from the
remaining aircraft grew unstable at such small loop ratios as 6-to-1, the addition of body rotational
acceleration and rate equations to the high frequency component returned the system to stability.
Not only did it become stable, but the system exhibited remarkably accurate results at such high
loop ratios as 12-to-1. As a simulation tool, the niultilooping method for rotorcraft is quite
valuable.

However, new aspects of the problem present themselves when the issue of practicality is
considered. There are many problems encountered in the area of computer science that are due
entircly to the conceptual conflicts encountered between the special-purpose computer and the
general-purpose problem. Some of these limitations can be overcome with a minimum of difficulty.
They include the small number of symbols allowed by the initial emulator and the lack of a
hardware divide. Though they result in some inconvenience, there are methods for circumventing

13

Illllllll I I I

them. However, the software development aspect of the problem is quite a different matter. The
need for an original FORTRAN model as a basis for translation to microcode can require an extra
development effort, separate from the array processor coding. The actual translation process is a
very slow and arduous one. Major manpower efforts are required of skilled programmers to translate
the initial FORTRAN model into microcode. Not only is the effort considerably greater than that
usually required in writing a FORTRAN model for the given specifications, but the degree of talent
available to do the work could very well be the determining factor in the success of such an
approach. Furthermore, once the model is microcoded, significant problems may be encountered
during logical debug. Even if the emulator/debugger process is given foreground status, and it is
possible that it may require total stand-alone capability, the debugging of such a lower level
language will require an extensive amount of time since it is known to be much more difficult t o
debug than FORTRAN.

In conclusion, a special-purpose digital computer can be utilized as a relatively low-hardware-
cost, high-speed computational element in rotorcraft real-time simulation. Given a rotor model that
requires a short cycle time, an array processor can provide the necessary computing bandwidth for
dynamic stability. With the addition of appropriate kinematic equations to the array processor, the
entire rotorcraft model can be accurately simulated using a multilooping scheme with a slower host
computer. Given the limitations discussed above, it should be realized that only a limited class of
rotorcraft models can be simulated, that the development of the simulation would require major
manpower efforts, and that changes to the simulation model could require extensive implementa-
tion time.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, California 94035, February 22, 1978

14

APPENDIX A

AP-120B DESCRIPTION

Hardware

The specific array processor chosen to perform this study is the Floating Point Systems
AP-120B. The AP-120B is a high-speed (1 67-nsec cycle time) peripheral floating point arithmetic
array processor, intended t o operate in parallel with a host computer. Figure 5 is a general block
diagram of the system elements and arithmetic paths, including a possible interconnection to the
host computer.

The system elements are interconnected with multiple, parallel arithmetic paths so that data
transfers may occur simultaneously. All internal floating point data paths are 38-bits wide (1 0-bit
biased exponent plus 28-bit mantissa). The interface unit is available for specific host computers
and allows either 1/0 or DMA channels to be utilized for data transfer. Format conversion during
data transfers is performed automatically in the interface unit.

Operation of the unit is controlled by the execution of 64-bit instruction words residing in
Program Source Memory. Program Source Memory is available in 256-word modules up to a
maximum of 4 K words. Integer arithmetic and control functions, such as address indexing and loop
counting are provided by the S-Pad unit. The S-Pad consists of sixteen 16-bit registers and an integer
arithmetic logic unit (ALU).

Main Data Memory is the primary data storage unit for the AP-120B. It is available with 38-bit
words, in 8 K modules, up to a maximum of 1 million words. Memory operations may be performed
every 167 nsec on alternate pages of interleaved memory. However, data “read” from memory are
not available in the memory data register until 500 nsec (3 clock cycles) after the read operation is
executed.

Table Memory is used to store constants and table data for look-up. It is available in 38-bit
word, 5 12-word modules up to a 65K word maximum. Table memory “reads” may be performed
every 167 nsec, and data are available 333 nsec after the read operation. The Data Pad Unit consists
of two blocks, each with 32 floating point accumulators. One register may be read and one register
may be written in each block in one instruction cycle. The registers are used primarily to store
intermediate results for immediate access.

The Floating Point Adder performs addition, subtraction, floating logical, and other floating
point operations on the contents of the adder input registers, A1 and A2. The operations are
performed in two stages, each requiring 167 nsec. Since the two stages are independent, a new
operation may be initiated every machine cycle, with the results being available 333 nsec later. A
function such as this, in which the operation may be initiated every clock cycle, but goes through
two or more stages before completion is known as “pipelining.”

The Floating Multiplier computes the product of the contents of the two multiplier input
registers. The operation is performed in three stages, each requiring 167 nsec. Since the three stages

15

are independent, a new multiply may be initiated every machine cycle, with the results being
available 500 nsec later. Floating multiplies and floating adds may be performed simultaneously.

A more complete description of the hardware elements of the AP-I20B may be obtained from
reference 6.

Software

Software packages available with the AP-120B may be categorized as follows:

1. Executive Routines
2. Mathematical Library
3. Program Development Package
4. Testing Programs

The AP executive program accommodates communication of the host with the AP-120B via a
series of FORTRAN or machine language subroutine calls. The executive driver routine interprets
the particular user subroutine call and directs the AP-120B to perform the desired task.

The AP Math Library includes 70 subroutines written in AP-120B assembly language and
callable either from the host computer, using APEX, or the AP user program. Most of the
subroutines are intended primarily for signal processing applications and are not useful for
simulation applications. However, the library does include computations of trigonometric functions
and vector manipulations that are applicable to this program.

The Program Development Package is composed of four FORTRAN programs which are
compiled on the host computer. These four programs are the assembler, linker, debugger, and
simulator. The assembler provides a two-pass assembly of user symbolic microcode into an object
module, and generates error diagnostics if necessary. The linker links and relocates APAL object
modules together into a single executable load module. The debugger is an interactive debugging
program which runs on the host computer. I t allows the user to set breakpoints, examine and
change memory and register contents, and execute selected segments of the program. The simulator
is called by APDBUG. These two programs provide an emulation of the AP-I20B. All timing
characteristics are evaluated, and floating point arithmetic is simulated. Thus, a user can write,
assemble, link, run, and debug a new AP program totally off-line without interfering with AP
operations.

The testing program consists of a collection of interactive diagnostic tests and verification
programs which aid in hardware maintenance. These include tests of interfaces, registers, arithmetic
units, and entire system operations.

16

T

APPENDIX B

ARGUMENT NORMALIZATION AND TABLE LOOK-UP

This appendix contains a short description of the algorithms used in the nonlinear function
generation routines on the FPS AP-120B. Timing results are given for argument normalization and
for one- and two-dimensional table look-ups.

Function tables have long been used in real-time aircraft simulation. Because some variables
result from empirical testing or statistical analysis, they defy adequate mathematical formulation.
Therefore, the large data tables and the concomitant software needed to process them, have to be
developed as reasonable alternatives. Among the software needed by simulation engineers are
programs for argument normalization and table look-up. Since the tables consist of argument
breakpoints and associated function data values which are discrete entities, the arguments calcu-
lated in the program must be normalized. In this process, it is determined between which
breakpoint table entries the argument falls, and the ratio of the difference between them. The table
look-up routine uses this information to interpolate a value from the given data set.

When using breakpoints with equally spaced intervals, the normalization algorithm is rather
straightforward. Assume a set of breakpoints x o , x I , . . . , x , such that xk+l - xk = d , for
k = 0, . . . , n- 1. Prior to execution time, it is, therefore, possible to determine the inverse of d.
Given an argument x , the normalization algorithm proceeds as follows. The argument is initially
checked for size. If x < x o [or x Z x ,] the first '(or last) breakpoint is assigned. Otherwise, x o is
subtracted from x and the result is multiplied by the inverse of d. The integer part of the result is
the breakpoint index, i, and the fractional part is the interpolatory ratio, Y.

The look-up process is just as straightforward. It is merely a linear interpolation algorithm in
one, two, or more dimensions. In one dimension, the equation for interpolation is:

In two dimensions, the look-up process proceeds as if two separate one-dimensional look-ups were
used to determine two function values for a third one-dimensional look-up. For example, we are
given a function of the form f (x , y) with x varying faster than y in the table. Thus, for each y
breakpoint, an array of x breakpoints exists. For simplicity, assume that the normalization routine
has determined that for a specific argument (X J) the breakpoint index in each dimension is 1, with
associated interpolatory ratios rX and Y ~ . The first two interpolations are:

These interpolations yield the two points indicated by A in figure 6. Using these two points for
a linear interpolation yields:

17

Ill I l l 1 I I I I I

This final value forf(x,y) is indicated by the asterisk in figure 6.

During coding for the array processor, much of these processes are overlapped to take
advantage of the pipelining feature. However, some modification of the present Ames algorithm was
made as to the manner in which the breakpoint information is communicated from the normaliza-
tion routine to the look-up programs. While the processes on the array processor and general-
purpose computers are analogous, more information, such as the number of x breakpoints per y ,
and the reciprocal of the interval size, is needed on the array processor. The data table header is also
stored in its own memory locations rather than as part of the function table.

The programs were designed, written, and tested on the array processor emulator. The time
required to normalize an argument and do a look-up in both one and two dimensions is a function
of the arguments being noimalized. If the argument is less than the lower limit of the breakpoint
table, normalization requires 2 psec. If it is greater than the upper limit of the breakpoint table, the
process requires 2.833 psec. If it lies between the limits, normalization requires 3.833 psec. Look-up
speed, on the other hand, is independent of the arguments used. One-dimensional look-up requires
3.167 psec, and two-dimensional look-ups require 6.66 psec. This represents a factor of 7 speed up,
in the worst case, over the XDS SIGMA 8.

18

, , , ,., 17i . 1
..111, . .. - -

APPENDIX C

ITERATIVE DIVIDE ALGORITHM

The Newton Method

The application of iterative algorithms to the solution of systems of equations is an area of
extensive study. The Newton method (or Newton-Raphson’s method) is one such algorithm which
proves to be very useful in digital solutions to certain functions.

Since this algorithm has been so widely studied (see refs. 7 and 8) a much simplified discussion
of the method will suffice here. The Newton method is defined as follows: Given: f (x) = O , f (x) is
continuously differentiable with first derivative f (x) , and a point xo (first estimate of solution).

Compute: for n = 0, 1, 2, . . .

The iterations are concluded when I X , + ~ - xn I has become less than the largest error one is willing
to permit in the root. It can be shown that this method is quadratically convergent or that it is a
second-order method (see ref. 7).

Application to Division

The Newton method can be applied to the solution of the division problem as follows. First,
define:

A f(x) = a -
1 -
X

Setting f(x) = 0, x is the inverse of a. Note that f(x) is not continuously differentiable about x = 0.
Because the inverse of x is not defined about x = 0, we will not be concerned with that case.
Differentiatingf(x) from equation (C2):

1

f‘(x) = -‘1- (C3 1
X

Now, substituting f (x n) and f ’ (x ,) , equations (C2) and (C3), into the iteration formula (Cl), we
obtain:

Xn+1 =x,[2 - a x ,] (C4)

Thus, an iterative solution to a quotient can be obtained by performing two multiplies and a
subtract.

19

I I 1 I

Application to Real-Time Simulation

For a real-time simulation on a special-purpose digital computer, i t is possible to apply this
algorithm as follows. First, the usual procedure in a real-time simulation is to define several
“modes” of operation, two of which are I.C. (Initial Conditions - sometimes called “reset”) and
operate. In I.C., certain initial values on variables, integrators, filter, etc., are computed or input and
the computer execution is not time-dependent. In operate mode all integrators, filters, and
differential equations are executed with the requirement that the computer execution be completed
within the specified integration interval. For the Newton method, therefore, since I.C. mode is
time-independent, it is possible to compute the true reciprocal in I.C. Thus, at the moment the
simulation goes into operate mode, a perfect or near-perfect first estimate of the solution is
available.

It is necessary to modify the algorithm in equation (C4) slightly because we are trying t o
determine the inverse in real time of a dynamically varying quantity. Thus, equation (C4) becomes

Once the simulation is in operate mode at a given cycle time (integration interval) of At , assuming
the At is sufficiently small and a(t) is smooth, the first estimate for the solution in a given cycle can
be obtained from the solution in the preceeding cycle. Thus:

Since this method is being implemented to provide a fast solution to the inverse of a, it will often
be implemented using only one iteration per cycle. Substituting equation (C6) into equation (C5)
yields, for one iteration per cycle:

~ (t) =x(t - At)[2 - a(t)x(t - At)] (C7)

Experimental Results

The single-iteration, modified Newton-Raphson divide algorithm given by equation (C7) can be
tested using a simple program on a digital computer. Because this algorithm is intended to be
implemented on a blade-element rotor model, tests can be performed using a simplified version of
the model. Two inverses that are required for the model are 1 /cos p and 1 / VT, where p is the blade
flapping angle and VT is the blade element tangential velocity with respect to the wind.

The following simplifying assumptions can be made:

1. Flapping, 0, is sinusoidal with maximum excursions of k 1 5”.

2. Computer cycle time, At , is 5 msec.

3. Tangential velocity, VT, is determined by rotor angular rate, a, and forward velocity, V , of
the aircraft. For this example, VT will be determined at the blade tip.

20

I

I

. -
,._I.

4. Rotor radius, R, is 9.75 m (32 ft) and rotor angular rate, a, is 21.29 rad/sec.

Based on these simplifying assumptions, the equations for cos p and VT are as follows:

cos p = cos[15 cos \k] (C8)

where blade azimuth angle, q, is:

?k = n A t - n , n = 1 , 2 , . .

Using equations (C8) and (C9), a program can be written to compute the exact inverse of
cos p and VT, compute a single iteration inverse using equation (C7), and determine the percent

error between the exact and iterative inverses. Results of this study indicate that the percent error is
strongly dependent on the magnitude of the change in the variable from one cycle to the next.

In summary, the results are as follows: Over one complete revolution of the rotor, cos ranges
between 0.966 and 1 .O. The maximum percent error for the inverse of cos p is 0.001 5% using the
single-itera tion inverse.

Figure 7 is a plot of VT and percent error in the single iteration computation of l / V T as a
function of blade azimuth angle \k for the 1 13 m/sec (220 knot) case. At this airspeed, the value of
VT ranges between 95 m/sec (310 ft/sec) and 321 m/sec (1052 ft/sec). Maximum percent error for
the single-iteration inverse is 0.51 03%. Note from'figure 7 that whereas VT is sinusoidal, the percent
error for the single-iteration inverse is cyclic but not sinusoidal. As expected, the percent error is a
minimum where VT is most slowly varying from one cycle t o the next (or where the slope of VT is
closest to zero).

For the 62 m/sec (120 knot) case, VT ranges between 146 m/sec (478 ft/sec) and 269 m/sec
(884 ft/sec). Maximum percent error for the single-iteration inverse is 0.1 134% for this case.
Comparing these results with the previous case, it is apparent that the maximum percent error is
strongly dependent on the magnitude of the change in the variable.

Depending on required accuracy, these errors may or may not be acceptable. If there is a
requirement for greater accuracy, equation (C5) can be implemented to perform more than one
iteration per cycle and increase accuracy to the desired tolerance.

21

REFERENCES

1. Houck, Jacob A.; and Bowles, Roland L.: Effects of Rotor Model Degradation on the Accuracy of Rotorcraft
Real-Time Simulation. NASA TN D-8378,1976.

2. Michelson, S. G.; Alderete, T. S.; and Rieman, F. C.: A Study of Using the CDC 7600 in a Distributed Computing
Network for Real-Time Flight Simulation. Computer Sciences Corporation, CSC-PR 6-76, Nov. 1976.

3. Howe, R. M.; and Fogarty, L. E.: Computer Considerations for Real Time Simulation of a Generalized Rotor
Model. NASA CR-2877,1977.

4. Bekey, George A.; and Karplus, Walter J.: Computers for Real Time Flight Simulation: A Market Survey. NASA
CR-2885, 1977.

5. Mackie, D. Brian; and Alderete, Thomas S.: A Real-Time, Dual Processor Simulation of the Rotor Systems
Research Aircraft. NASA TN D-8328. 1977.

6. Processor Handbook, Rev 02, Form No. 7259. Floating Point Systems, Inc. Portland, Oregon, 1976.

7. Dahlquist, Germund; and Bjark, &e: Numerical Methods. Prentice-Hall, Inc. Englewood Cliffs, New Jersey,
1974.

8. Conte, S . D.; and deBoor, Carl: Elementary Numerical Analysis: An Algorithmic Approach. McGraw-Hill Book
Company, New York, 1972.

22

THIS PAGE LEFT INTENTIONALLY BLANK

23

1
I
i
I
I
I
1 ,
1,

4

TI

15" Isec 0
PBD PB

I
i

15" 0
BR

i
-I
I

' I I
:: I 4
1
:I
I I I1

Figure 1.- Effect of increasing loop ratios on dynamic response of a conipound rotorcraft a t
220 knots. Rotor At = 5 msec. Computation of rotational rates and accelerations on host
computer.

24

/ I
I :
I '

I

I

75"lSec 0 15" Isec
PBD

0 15"
PB PHI

Figure 1 .- Concluded.

0 15" 0
BR

25

I

. , I

I _.

1 ..
I _ _
I ..

1 .-
I ..

1 _ _
I _ _
1
I:

-1 ::

II

-0
I

I

T
75'1sec2 0 15" fsec 0 15" 0 15" 0

PBD PB PHI BR
.-

Figure 2.- Effect of increasing loop rarios on dynamic response of a compound rotorcraft at
220 knots. Rotor At = 5 msec. Computation of rotational rates and accelerations on array
processor.

26

..... 1, 1::

....

.....
...

1:: :
....

. .

....

...

. . .

... .,..

.....

I
1..

75" ISH 0
PBD

I: I
::I \i

- - I I I
1: I 1'

15" Isec

..

. .

....

0
PB

TO 1
I t I
15"

f

t

0 15" 0
PHI BR

Figure 2.- Concluded.

27

-. .. _.

I l l I

I
1
1
si
-1
i
1 i _ _

_ _
_ _
_ _
_ _

:I

' I I
75"lsec2 0 1 5" lsec 0 15" 0 15" 0

PBD PB PHI BR

Figure 3.- Effect of increasing loop ratios on dynamic response of a compound rotorcraft at
220 knots. Rotor Ar = 6 msec. Computation of rotational rates and accelerations on array
processor.

28

- -

75" Isec2 0 15"
PBD

0 1 5" 0
PB PHI

15" 0
BR

Figure 3.- Concluded.

29

I

I l l I l l1 I I I

1

1
1
4

1 1
1

~ ' t s e c 2 0 15"/sec 0 15' 0 15" 0
PBD PB PHI BR

Figure 4.- Effect of increasing loop ratios on dynamic response of a helicopter at 60 knots. Rotor
At = 5 msec. Computation of rotational rates and accelerations on array processor.

30

[i;
...
...
.....
_..... . .

...

. I -f l__. ,.... ...
.

0 1 5' lsec 0 15' 0 15' 0
PBD PB PHI BR

.

Figure 4.- Concluded.

31

I /o

MULTIPLE 38-BIT PATHS *

DMA

.

TABLE
MEMORY

INSTRUCTION
R EGl STE R

PAD S-PAD
Y REG I STE RS

S-PAD

PROGRAM
SOURCE
MEMORY

DATA
PAD

X

MU LTI PL E 16 BITS

38-BIT PATHS

FLOATING
MULTIPLIER STAGE

STAGE 3

‘r 16 BITS
1 ----
I
I
I

MULTIPLE 38-BIT PATHS

Figure 5.- Representative host/AP-l20B block diagram.

32

X RATIO

-y2

4 I
I

RATIO
/Y1

I I

Figure 6.- Graphical representation of the table look-up procedure for a function of two variables.

1200 r

" 0 50 100 150 200 250 300 350
ROTOR BLADE AZIMUTH, deg

Figure 7.- Error in computation of single iteration inverse of V T for 113 m/sec (220 knots) case
VT shown for reference.

33

. -~ ~

1. Report No. 2. Government Accession No.

-
NASA TP - 1267

-

4. Title and Subtitle

APPLICATION OF SPECIAL-PURPOSE DIGITAL COM-
PUTERS TO ROTORCRAFT REAL-TIME SIMULATION

--
5. Report Date

July 1978

-

7 Author(s)

D. Brian Mackie and Seth Michelson
- - - _ _ - . -

9 Performing Organization Name and Address

NASA Ames Research Center, Moffett Field, Calif. 94035 and
Computer Sciences Corporation, Mountain View, Calif. 94040

. -
14. Sponsoring Agency Code

_.

. -

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

.~ ~ - ~~

15. Supplementary Notes

NASA-Langley, 1978

.. .

3. Recipient's Catalog No.

I
~

3. Security Classif. (of this report)

Unclassified

6. Performing Organization Code

20. Security Classif. (of this page) 1 21. NO. of? 22. Price'

Unclassified . . - I - $4.00

8. Performing Organization Report No.

A-7343
10. Work Unit No.

50 5 -09-42
11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Paper

A study was initiated to determine the suitability of using an array processor as a
computational element in rotorcraft real-time simulation. It was necessary to determine
whether the speed of such a processor would be great enough t o accurately simulate complex
rotorcraft. Since memory limits on such a computer are quite restrictive, only the rotor
portion of the model could be array processor resident. The array processor proved fast
enough to execute the rotor code in less than 5 nisec. Thus, the course of investigation
branched into a study of the validity of a multilooping scheme, in which the rotor would loop
over its calculations a number of times whde the remainder of the model cycled once on a host
computer. To prove that such a method would realistically simulate rotorcraft, a FORTRAN
program was constructed to emulate a typical host/array processor computing configuration.
The multilooping of an expanded rotor model, which included appropriate kinematic equa-
tions, resulted in an accurate and stable simulation.

In the course of the study, many programming and operational difficulties were encoun-
tered. All of these were due to a fundamental conflict of concepts between the general-purpose
program and the special-purpose computer. Some of these problems were mere inconveniences.
However, several severe problems were also encountered during the development of the
array processor program. In particular, major manpower effort was required for translation of
a FORTRAN model into microcode, and logical debug would further require substantial

- effort. - - -~

7. Key Words (Suggested by Author(s)) I 18. Distribution Statement

Array processor
Rot or craf t re al-t i me si in ula t i o t i

Mult ilooping

Un 1 i mi ted

STAR Category - 05

'For sale by the National Technical Information Service, Springfield, Virginia 221 61

I

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA451

USMAIL

National Aeronautics and
Space Administration

Washington, D.C.
20546
Official Business
Penalty for Private Use, $300

THIRD-CLASS BULK RATE

3 1 m , A , 067578 S00903DS DEPT OF THE AIR FORCE
BF WRAPORS L A 3 0 R A T O R Y
ATTNt TECHNICAL L I B B B R Y (S u i ,)

I ' f t f 'R, ' fXAND APB NM 87717
\" v -

8 . . '
. :,-

NASA POSTMASTER : If Undeliverable (Section 158
Postal Manual) Do Not Return

